作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Communication, Biomedical and sports industry is in continuous growth in the last decade. Wide band compact wearable active and tunable sensors and antennas are crucial in development of new wearable Body Area Network, BAN, systems. BAN antennas should be flexible, light weight, compact and have low production cost. Slot antennas are compact and have low production costs. Slot antennas may be employed in wearable communication systems. The dynamic range and the efficiency of communication systems may be improved by using efficient wearable slot antennas. Small printed antennas suffer from low efficiency. Amplifiers may be connected to the wearable antenna feed line to increase the system dynamic range. Novel wideband passive and active efficient wearable antennas for BAN applications are presented in this paper. Active wearable antennas may be used in receiving or transmitting communication and medical systems. The slot antenna bandwidth is from 45% to 100% with VSWR better than 3:1. The slot antenna gain is around 3 dBi with efficiency from 85% to 92%. The antenna electrical parameters were computed in vicinity of the human body. The active slot antenna gain is 18 ± 2.5 dB for frequencies ranging from 200 MHz to 750 MHz. The active slot antenna gain is 12 ± 2 dB for frequencies ranging from 1.3 GHz to 3.3 GHz. The active slot antenna Noise Figure is 0.5 ± 0.3 dB for frequencies ranging from 200 MHz to 3.3 GHz. A voltage controlled diode, varactor, may be used to control the antenna electrical performance at different environments. For example an antenna located on the patient stomach has VSWR better than 2:1 at 434 MHz. However, if the antenna will be placed on the patient back it may resonate at 420 MHz. By varying the varactor bias voltage, the antenna resonant frequency may be shifted from 420 MHz to 434 MHz. The antennas presented in this paper are low cost wideband active antennas for receiving and transmitting communication systems.
推荐文章
SPORT 卫星子星结构布局及动力学仿真分析
子星结构设计
伸展臂
动力学仿真
Guizhou Province, China: the birthplace of modern Medical Geology
Coal
Fluorosis
Arsenic poisoning
Selenosis
Health impacts
Environmental health
Compact PCI热插拔技术的研究及其实现
CPCI总线
热插拔
工业总线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 New Wideband Compact Wearable Slot Antennas for Medical and Sport Sensors
来源期刊 传感技术(英文) 学科 医学
关键词 WEARABLE SENSORS MEDICAL Applications Active Systems MEDICAL and SPORT SENSORS
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 18-34
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
WEARABLE
SENSORS
MEDICAL
Applications
Active
Systems
MEDICAL
and
SPORT
SENSORS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
传感技术(英文)
季刊
2161-122X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
114
总下载数(次)
0
总被引数(次)
0
论文1v1指导