基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The present study involves estimation of open channel flow parameters having different bed materials invoking data of Gradual Varied Flow (GVF). Use of GVF data facilitates estimation of flow parameters. The necessary data base was generated by conducting laboratory. In the present study, the efficacy of the Genetic Algorithm (GA) optimization technique is assessed in estimation of open channel flow parameters from the collected experimental data. Computer codes are developed to obtain optimal flow parameters Optimization Technique. Applicability, adequacy and robustness of the developed code are tested using sets of theoretical data generated by experimental work. A simulation model was developed to compute GVF depths at preselected discrete sections for given downstream head and discharge rate. This model is linked to an optimizer to estimate optimal value of decision variables. The proposed model is employed to a set of laboratory data for three bed materials. Application of proposed model reveals that optimal value of fitting parameter ranges from 1.42 to 1.48 as the material gets finer and optimal decision variable ranges from 0.015 to 0.024. The optimal estimates of Manning’s n of three different bed conditions of experimental channel appear to be higher than the corresponding reported/Strickler’s estimates.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Estimation of Open Channel Flow Parameters by Using Genetic Algorithm
来源期刊 最优化(英文) 学科 医学
关键词 PARAMETER ESTIMATION GENETIC Algorithm Optimal VALUES GVF Profiles
年,卷(期) 2018,(3) 所属期刊栏目
研究方向 页码范围 51-64
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PARAMETER
ESTIMATION
GENETIC
Algorithm
Optimal
VALUES
GVF
Profiles
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
最优化(英文)
季刊
2325-7105
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
65
总下载数(次)
0
总被引数(次)
0
论文1v1指导