基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across many spheres of influence such as business, finance, medicine, etc. to enhance produces, causes, efficiency, etc. This need for more accurate, detail-oriented classification increases the need for modifications, adaptations, and innovations to Deep Learning Algorithms. This article used Convolutional Neural Networks (CNN) to classify scenes in the CIFAR-10 database, and detect emotions in the KDEF database. The proposed method converted the data to the wavelet domain to attain greater accuracy and comparable efficiency to the spatial domain processing. By dividing image data into subbands, important feature learning occurred over differing low to high frequencies. The combination of the learned low and high frequency features, and processing the fused feature mapping resulted in an advance in the detection accuracy. Comparing the proposed methods to spatial domain CNN and Stacked Denoising Autoencoder (SDA), experimental findings revealed a substantial increase in accuracy.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
基于Titan Image软件的QuickBird影像融合
Titan Image
QuickBird
影像融合
质量评价
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Ensemble of Convolutional Neural Networks Using Wavelets for Image Classification
来源期刊 软件工程与应用(英文) 学科 工学
关键词 CNN SDA Neural Network Deep LEARNING WAVELET Classification Fusion Machine LEARNING OBJECT Recognition
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 69-88
页数 20页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CNN
SDA
Neural
Network
Deep
LEARNING
WAVELET
Classification
Fusion
Machine
LEARNING
OBJECT
Recognition
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件工程与应用(英文)
月刊
1945-3116
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
885
总下载数(次)
0
总被引数(次)
0
论文1v1指导