基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Vehicular ad hoc networks (VANETs) enable wireless communication among Vehicles and Infrastructures. Connected vehicles are promising in Intelligent Transportation Systems (ITSs) and smart cities. The main ob-jective of VANET is to improve the safety, comfort, driving efficiency and waiting time on the road. VANET is unlike other ad hoc networks due to its unique characteristics and high mobility. However, it is vulnerable to various security attacks due to the lack of centralized infrastructure. This is a serious threat to the safety of road traffic. The Controller Area Network (CAN) is a bus communication protocol which defines a standard for reliable and efficient transmission between in-vehicle parts simultaneously. The message moves through CAN bus from one node to another node, but it does not have information about the source and destination address for authentication. Thus, the attacker can easily inject any message to lead to system faults. In this paper, we present machine learning techniques to cluster and classify the intrusions in VANET by KNN and SVM algorithms. The intrusion detection technique relies on the analysis of the offset ratio and time interval between the messages request and the response in the CAN.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Classification Approach for Intrusion Detection in Vehicle Systems
来源期刊 无线工程与技术(英文) 学科 医学
关键词 CAN-BUS IDS KNN SVM Machine Learning DOS ATTACK Fuzzy ATTACK
年,卷(期) wxgcyjsyw_2018,(4) 所属期刊栏目
研究方向 页码范围 79-94
页数 16页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CAN-BUS
IDS
KNN
SVM
Machine
Learning
DOS
ATTACK
Fuzzy
ATTACK
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线工程与技术(英文)
季刊
2152-2294
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
154
总下载数(次)
0
论文1v1指导