基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Many preterm infants suffer from neural disorders caused by early birth complications. The detection of children with neurological risk is an important challenge. The electroencephalogram is an important technique for establishing long-term neurological prognosis. Within this scope, the goal of this study is to propose an automatic detection of abnormal preterm babies’ electroencephalograms (EEG). A corpus of 316 neonatal EEG recordings of 100 infants born after less than 35 weeks of gestation were preprocessed and a time series of standard deviation was computed. This time series was thresholded to detect Inter Burst Intervals (IBI). Temporal features were extracted from bursts and IBI. Feature selection was carried out with classification in one step so as to select the best combination of features in terms of classification performance. Two classifiers were tested: Multiple Linear Regressions and Support Vector Machines (SVM). Performance was computed using cross validations. Methods were validated on a corpus of 100 infants with no serious brain damage. The Multiple Linear Regression method shows the best results with a sensitivity of 86.11% ± 10.01%, a specificity of 77.44% ± 7.62% and an AUC (Area under the ROC curves) of 0.82 ± 0.04. An accurate detection of abnormal EEG for preterm infants is feasible. This study is a first step towards an automatic analysis of the premature brain, making it possible to lighten the physician’s workload in the future.
推荐文章
基于Object Detection API的物流单元货架目标检测
深度学习
物流单元货架
目标检测
Faster R-CNN算法
SSD-MobileNet算法
基于谷歌TensorFlow Object Detection的"智慧"分类垃圾桶设计
垃圾智能分类
谷歌TensorFlow
Object Detection
python
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Automatic Abnormal Electroencephalograms Detection of Preterm Infants
来源期刊 数据分析和信息处理(英文) 学科 医学
关键词 AUTOMATIC EEG Analysis Machine Learning Multiple Linear Regressions PRETERM INFANTS Support VECTOR Machines
年,卷(期) sjfxhxxclyw_2018,(4) 所属期刊栏目
研究方向 页码范围 141-155
页数 15页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
AUTOMATIC
EEG
Analysis
Machine
Learning
Multiple
Linear
Regressions
PRETERM
INFANTS
Support
VECTOR
Machines
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
论文1v1指导