基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Due to the ability to model various complex phenomena where classical calculus failed, fractional calculus is getting enormous attention recently. There are several approaches available for numerical approximations of various types of fractional differential equations. For fractional diffusion equations spectral collocation is one of the efficient and most popular ap-proximation techniques. In this research, we introduce spectral collocation method based on Lagrange’s basis polynomials for numerical approximations of two-dimensional (2D) space fractional diffusion equations where spatial fractional derivative is described in Riemann-Liouville sense. We consider four different types of nodes to generate Lagrange’s basis polynomials and as collocation points in the proposed spectral collocation technique. Spectral collocation method converts the diffusion equation into a system of ordinary differential equations (ODE) for time variable and we use 4th order Runge-Kutta method to solve the resulting system of ODE. Two examples are considered to verify the efficiency of different types of nodes in the proposed method. We compare approximated solution with exact solution and find that Lagrange’s spectral collocation method gives very high accuracy approximation. Among the four types of nodes, nodes from Jacobi polynomial give highest accuracy and nodes from Chebyshev polynomials of 1st kind give lowest accuracy in the proposed method.
推荐文章
Diffusion in garnet: a review
High temperature and high pressure
Diffusion
Garnet
Point defects
一类新型Chua's电路的Lagrange稳定性分析
Chua's电路
吸引集
正向不变集
指数稳定
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Lagrange’s Spectral Collocation Method for Numerical Approximations of Two-Dimensional Space Fractional Diffusion Equation
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 Lagrange’s SPECTRAL METHOD 2D FRACTIONAL DIFFUSION Equation COLLOCATION METHOD
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 121-136
页数 16页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Lagrange’s
SPECTRAL
METHOD
2D
FRACTIONAL
DIFFUSION
Equation
COLLOCATION
METHOD
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导