基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
LightGBM is an open-source, distributed and high-performance GB framework built by Microsoft company. LightGBM has some advantages such as fast learning speed, high parallelism efficiency and high-volume data, and so on. Based on the open data set of credit card in Taiwan, five data mining methods, Logistic regression, SVM, neural network, Xgboost and LightGBM, are compared in this paper. The results show that the AUC, F1-Score and the predictive correct ratio of LightGBM are the best, and that of Xgboost is second. It indicates that LightGBM or Xgboost has a good performance in the prediction of categorical response variables and has a good application value in the big data era.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Comparison of Several Data Mining Methods in Credit Card Default Prediction
来源期刊 智能信息管理(英文) 学科 医学
关键词 LightGBM Xgboost AUC F1-Score Data MINING
年,卷(期) 2018,(5) 所属期刊栏目
研究方向 页码范围 115-122
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LightGBM
Xgboost
AUC
F1-Score
Data
MINING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能信息管理(英文)
半月刊
2160-5912
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
114
总下载数(次)
0
总被引数(次)
0
论文1v1指导