基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Road traffic sign recognition is an important task in intelligent transportation system.Convolutional neural networks(CNNs)have achieved a breakthrough in computer vision tasks and made great success in traffic sign classification.In this paper,it presents a road traffic sign recognition algorithm based on a convolutional neural network.In natural scenes,traffic signs are disturbed by factors such as illumination,occlusion,missing and deformation,and the accuracy of recognition decreases,this paper proposes a model called Improved VGG(IVGG)inspired by VGG model.The IVGG model includes 9 layers,compared with the original VGG model,it is added max-pooling operation and dropout operation after multiple convolutional layers,to catch the main features and save the training time.The paper proposes the method which adds dropout and Batch Normalization(BN)operations after each fully-connected layer,to further accelerate the model convergence,and then it can get better classification effect.It uses the German Traffic Sign Recognition Benchmark(GTSRB)dataset in the experiment.The IVGG model enhances the recognition rate of traffic signs and robustness by using the data augmentation and transfer learning,and the spent time is also reduced greatly.
推荐文章
The Road Not Taken中的象征主义及其艺术特征
罗伯特·弗罗斯特
The Road Not Taken
象征主义
艺术特征
Lyocell与Model织物风格比较
再生纤维素纤维
Lyocell织物
Model织物
风格特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Improved VGG Model for Road Traffic Sign Recognition
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 INTELLIGENT TRANSPORTATION TRAFFIC SIGN DEEP learning GTSRB data augmentation
年,卷(期) 2018,(10) 所属期刊栏目
研究方向 页码范围 11-24
页数 14页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
INTELLIGENT
TRANSPORTATION
TRAFFIC
SIGN
DEEP
learning
GTSRB
data
augmentation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导