原文服务方: 现代电子技术       
摘要:
为了解决手写数字识别困难和准确率问题,提出基于改进VGG-16和朴素贝叶斯的手写数字识别,主要通过归一化和双线性插值对图像进行预处理,然后通过改进的VGG-16网络框架对图像进行特征提取和特征融合,通过LDA方法进行数据降维,最后通过朴素贝叶斯分类器进行分类.在MNIST数据集中进行实验,获得了99.36%的准确率.实验结果验证了卷积神经网络与朴素贝叶斯结合后可以有效地提高识别准确率.
推荐文章
基于改进特征加权的朴素贝叶斯分类算法
文本分类
朴素贝叶斯
JS散度
词频
文本频率
类别频率
基于改进的VGG-16卷积神经网络的肺结节检测
肺结节
VGG-16
极限学习机
卷积神经网络
基于改进朴素贝叶斯法的手机垃圾短信过滤算法研究
垃圾短信
数据不均衡
频繁项特征
朴素贝叶斯
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进VGG-16和朴素贝叶斯的手写数字识别
来源期刊 现代电子技术 学科
关键词 手写数字识别 VGG-16网络 朴素贝叶斯分类器 图像预处理 特征提取 数据降维
年,卷(期) 2020,(12) 所属期刊栏目 人工智能
研究方向 页码范围 176-181,186
页数 7页 分类号 TN919-34|TP391.41
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2020.12.041
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王梅 东北石油大学计算机与信息技术学院 26 38 3.0 5.0
2 李东旭 东北石油大学计算机与信息技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (118)
共引文献  (40)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(7)
  • 参考文献(2)
  • 二级参考文献(5)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(10)
  • 参考文献(2)
  • 二级参考文献(8)
2016(17)
  • 参考文献(1)
  • 二级参考文献(16)
2017(13)
  • 参考文献(0)
  • 二级参考文献(13)
2018(11)
  • 参考文献(3)
  • 二级参考文献(8)
2019(7)
  • 参考文献(7)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手写数字识别
VGG-16网络
朴素贝叶斯分类器
图像预处理
特征提取
数据降维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导