基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对图像美感度分类中出现的准确率低、美感特征描述差等问题,提出了一种基于深层卷积神经网络的图像美感度分类算法.首先将图片输入 55 层卷积神经网络自动学习并获得更加细致和深层次的美感特征,然后通过 softmax分类器进行图像美感度分类,从而得到最优的分类结果.将该算法与多种传统算法和浅层深度卷积神经网络的算法进行对比实验,结果表明该算法在A1和A0数据库的准确率分别达到80.13% 和 87.32%,且在CUHKPQ数据库的 6 种场景下,获得了更好的分类准确率.
推荐文章
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于多层卷积神经网络的SAR图像分类方法
雷达目标识别
卷积神经网络
深度学习
MSTAR数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深层卷积神经网络的图像美感度分类
来源期刊 中北大学学报(自然科学版) 学科 工学
关键词 卷积神经网络 特征提取 图像美感度分类
年,卷(期) 2018,(4) 所属期刊栏目 电子与电子信息
研究方向 页码范围 467-473
页数 7页 分类号 T391.41
字数 3599字 语种 中文
DOI 10.3969/j.issn.1673-3193.2018.04.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨国亮 江西理工大学电气工程与自动化学院 74 384 10.0 16.0
2 王志元 江西理工大学电气工程与自动化学院 4 14 2.0 3.0
3 曾建尤 江西理工大学电气工程与自动化学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (29)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (16)
二级引证文献  (5)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(5)
  • 引证文献(1)
  • 二级引证文献(4)
研究主题发展历程
节点文献
卷积神经网络
特征提取
图像美感度分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中北大学学报(自然科学版)
双月刊
1673-3193
14-1332/TH
大16开
太原13号信箱
1979
chi
出版文献量(篇)
2903
总下载数(次)
7
总被引数(次)
15437
论文1v1指导