基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对SVM中当训练样本数非常多时,分类算法训练阶段的计算量庞大;当训练样本集中存在噪声时,影响训练阶段超平面划分的准确度,导致分类准确率降低等问题,提出了一种基于密度的训练样本裁剪的SVM算法.首先应用密度裁剪算法裁剪掉原始训练样本集中存在的噪声和冗余样本,作为新训练样本集,使用网格搜索算法在新的训练样本集中对SVM参数(C,g)寻优,进行SVM训练并建模,达到分类的目的.实验结果表明,该算法同无样本裁剪的SVM算法相比分类准确率有所提高、训练阶段的时间耗费大大降低.
推荐文章
基于改进SVM算法的植物叶片分类研究
植物叶片分类
布谷鸟搜索算法
支持向量机
基于多级SVM分类的语音情感识别算法
语音情感识别
支持向量机
多级分类
主成分分析
基于商空间粒度理论的大规模SVM分类算法
粒度
商空间
支持向量机
分类
机器学习
基于SVM的Web文本快速增量分类算法
支持向量机
支持向量
最优分类超平面
KKT条件
文本特征向量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度裁剪的SVM分类算法
来源期刊 青岛大学学报(自然科学版) 学科 工学
关键词 密度 样本裁剪 SVM 网格搜索算法
年,卷(期) 2018,(3) 所属期刊栏目 信息工程
研究方向 页码范围 46-51
页数 6页 分类号 TP301.6
字数 4465字 语种 中文
DOI 10.3969/j.issn.1006-1037.2018.08.09
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张公敬 青岛大学计算机科学技术学院 15 44 4.0 5.0
2 范支菊 青岛大学计算机科学技术学院 3 6 1.0 2.0
3 杨嘉东 温州肯恩大学计算机科学系 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (119)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
密度
样本裁剪
SVM
网格搜索算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
青岛大学学报(自然科学版)
季刊
1006-1037
37-1245/N
16开
青岛市宁夏路308号
1988
chi
出版文献量(篇)
1805
总下载数(次)
12
总被引数(次)
6176
论文1v1指导