Tuberculosis is one of the top killer diseases in the globe. The aim of this study was to explore the geographic distribution patterns and clustering characteristics of the disease incidence in terms of both space and time with high relative risk locations for tuberculosis incidence in Beijing area. A retrospective space-time clustering analysis was conducted at the districts level in Beijing area based on reported cases of sputum smear-positive pulmonary tuberculosis (TB) from 2005 to 2014. Global and local Moran’s I, autocorrelation analysis along with Ord (Gi*) statistics was applied to detect spatial patterns and the hotspot of TB incidence. Furthermore, the Kuldorff’s scan statistics were used to analyze space-time clusters. A total of 40,878 TB cases were reported in Beijing from 2005 to 2014. The annual average incidence rate was 22.11 per 100,000 populations (ranged from 16.55 to 25.71). The seasonal incidence occurred from March to July until late autumn. A higher relative risk area for TB incidence was mainly detected in urban and some rural districts of Beijing. The significant most likely space-time clusters and secondary clusters of TB incidence were scattered diversely in Beijing districts in each study year. The risk population was mainly scattered in urban and dense populated districts, including in few rural districts.