基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(support vector machine,SVM)应用于轴承故障诊断前,首先要提取轴承的特征信号.在以往的特征信号提取中,往往是依据已有的知识模型进行特征筛选.随着近年来深度神经网络(deep neural network,DNN)的应用与推广,自动编码器(auto-encoder,AE)在特征提取方面的优势尤为突出.作为一种无监督的学习方式,AE能够基于数据驱动提取信号的特征值,使得特征提取不再依赖于先验知识,从而让整个故障诊断过程更具智能化.本文运用改进的AE、去噪自动编码器(denoising autoencoder,DAE),进行轴承信号特征提取,并用SVM进行故障诊断.最终与基于经验模态分解(empirical mode decomposition,EMD)能量熵的SVM对比,反映具有无监督学习方式的DAE-SVM在轴承故障诊断方面的优越性,诊断准确率接近100%.
推荐文章
基于循环自动编码器的间歇过程故障监测
算法
动态建模
神经网络
LSTM
过程监测
循环自动编码器
基于小波和深度小波自编码器的轴承故障诊断
滚动轴承
提升双树复小波包
深度小波自编码器
迁移学习
故障诊断
基于QPSO-SVM的轴承故障诊断方法
量子粒子群
支持向量机
参数优化
故障诊断
EMD分解
基于小波包分解和EMD-SVM的轴承故障诊断方法
故障诊断
小波包分解
轴承
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自动编码器和SVM的轴承故障诊断方法
来源期刊 郑州大学学报(工学版) 学科 工学
关键词 支持向量机 自动编码器 无监督特征提取 经验模态分解 信息熵 故障诊断
年,卷(期) 2018,(5) 所属期刊栏目 智能计算
研究方向 页码范围 68-72
页数 5页 分类号 TH133.33
字数 2934字 语种 中文
DOI 10.13705/j.issn.1671-6833.2018.05.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 雷文平 郑州大学机械工程学院振动工程研究所 50 278 9.0 14.0
2 林辉翼 郑州大学机械工程学院振动工程研究所 7 7 1.0 2.0
3 吴小龙 郑州大学机械工程学院振动工程研究所 2 5 1.0 2.0
4 陈超宇 郑州大学机械工程学院振动工程研究所 3 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (80)
参考文献  (10)
节点文献
引证文献  (5)
同被引文献  (14)
二级引证文献  (7)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(5)
  • 引证文献(3)
  • 二级引证文献(2)
2020(7)
  • 引证文献(2)
  • 二级引证文献(5)
研究主题发展历程
节点文献
支持向量机
自动编码器
无监督特征提取
经验模态分解
信息熵
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(工学版)
双月刊
1671-6833
41-1339/T
大16开
河南省郑州市科学大道100号
36-232
1980
chi
出版文献量(篇)
3118
总下载数(次)
0
总被引数(次)
21814
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导