基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
分类受限玻尔兹曼机(classification restricted boltzmann machine,ClassRBM)在各种分类问题中得到了广泛应用.ClassRBM是一种自带标签信息的神经网络模型,它使用一个神经元标识某类数据的类标.标签神经元总是稀疏的,一个神经元仅能为网络模型参数提供有限的信息.论文在ClassRBM现有的网络结构上,增加标签神经元个数,使每个类标用K个神经元标识,为网络模型参数提供更多的信息,提升模型表达能力,进而改善ClassRBM的分类性能.论文在不同数据集上进行了测试,结果表明改进模型的分类效果可以优于ClassRBM.
推荐文章
受限玻尔兹曼机与加权Slope One的混合推荐算法研究
受限玻尔兹曼机
加权SlopeOne
修正余弦相似度
Jaccard相似度
基于深度玻尔兹曼机的乐器分类问题研究
深度玻尔兹曼机
乐器分类
深度学习
平均场理论
动量项
玻尔兹曼熵和克劳修斯熵的关系
玻尔兹曼熵
克劳修斯熵
广泛
基于深度玻尔兹曼机的文本特征提取研究
文本特征
多重softmax模型
深度学习
深度玻尔兹曼机
稀疏表示
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新的分类受限玻尔兹曼机改进模型
来源期刊 小型微型计算机系统 学科 工学
关键词 分类受限玻尔兹曼机 特征学习 分类 改进模型
年,卷(期) 2018,(7) 所属期刊栏目 人工智能与算法研究
研究方向 页码范围 1415-1419
页数 5页 分类号 TP181
字数 5230字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闫河 重庆理工大学计算机科学与工程学院 37 168 6.0 11.0
2 李唯唯 重庆理工大学计算机科学与工程学院 8 99 4.0 8.0
3 尹静 重庆理工大学计算机科学与工程学院 9 25 3.0 4.0
4 杨德红 重庆理工大学计算机科学与工程学院 9 23 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (11)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
分类受限玻尔兹曼机
特征学习
分类
改进模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导