基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出两种无限简单连分数的求值方法.连分数首先被表示为数列的递推关系式.如果数列为收敛数列.那么无限连分数的值即为数列极限.方法一是,利用求方程的方法求解数列的极限,从而得到无限连分数的值;方法二是,先利用斐波那契数列直接求出连分数对应数列的通项表达式,进而直接取通项的极限得到连分数的值.同时,利用图像法可以直观地表示连分数的迭代求值过程.另外,基于方法一的思想,构造了对于一般函数方程的迭代格式,并指出这种迭代格式可以自然引导至微分方程中的皮卡序列方法.
推荐文章
利用有限简单连分数的最佳逼近原理破译公钥密码RSA及其实现
RSA密码体制
解密指数
加密指数
逼近原理
CRT-RSA的连分数算法攻击的分析
中国剩余定理RSA
公钥密码系统
连分数
解密指数
对称连分数
简单连分数
对称连分数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 无限简单连分数的计算及其应用
来源期刊 南通大学学报(自然科学版) 学科 数学
关键词 无限连分数 收敛数列 通项表达式 图像法 迭代格式
年,卷(期) 2018,(2) 所属期刊栏目 数理科学
研究方向 页码范围 90-94
页数 5页 分类号 O241
字数 2497字 语种 中文
DOI 10.3969/j.issn.1673-2340.2018.02.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钟志华 南通大学理学院 40 162 6.0 12.0
2 周童 复旦大学数学科学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (31)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无限连分数
收敛数列
通项表达式
图像法
迭代格式
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南通大学学报(自然科学版)
季刊
1673-2340
32-1755/N
大16开
江苏省南通市啬园路9号
2002
chi
出版文献量(篇)
1549
总下载数(次)
7
总被引数(次)
6139
论文1v1指导