基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Certain distributions do not have a closed-form density, but it is simple to draw samples from them. For such distributions, simulated minimum Hellinger distance (SMHD) estimation appears to be useful. Since the method is distance-based, it happens to be naturally robust. This paper is a follow-up to a previous paper where the SMHD estimators were only shown to be consistent;this paper establishes their asymptotic normality. For any parametric family of distributions for which all positive integer moments exist, asymptotic properties for the SMHD method indicate that the variance of the SMHD estimators attains the lower bound for simulation-based estimators, which is based on the inverse of the Fisher information matrix, adjusted by a constant that reflects the loss of efficiency due to simulations. All these features suggest that the SMHD method is applicable in many fields such as finance or actuarial science where we often encounter distributions without closed-form density.
推荐文章
谱归一化Wasserstein distance迁移网络
Wasserstein distance
迁移学习
Lipschitz约束
谱归一化
基于NRF51822的RSSI-Distance曲线探究
RSSI技术
RSSI-Distance曲线
定位系统
信号强度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Asymptotic Normality Distribution of Simulated Minimum Hellinger Distance Estimators for Continuous Models
来源期刊 统计学期刊(英文) 学科 数学
关键词 Continuous DISTRIBUTION KERNEL Density ESTIMATE CONTINUITY in PROBABILITY DIFFERENTIABILITY in PROBABILITY Hellinger Distance
年,卷(期) 2018,(5) 所属期刊栏目
研究方向 页码范围 846-860
页数 15页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Continuous
DISTRIBUTION
KERNEL
Density
ESTIMATE
CONTINUITY
in
PROBABILITY
DIFFERENTIABILITY
in
PROBABILITY
Hellinger
Distance
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导