基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities,this also brings influence to the mechanical fault diagnosis field.Therefore,according to the characteristics of motor vibration signals(nonstationary and difficult to deal with)and mechanical‘big data’,combined with deep learning,a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed.The frequency domain signals obtained by the Fourier transform are used as input to the network.This method can extract features adaptively and unsupervised,and get rid of the dependence of traditional machine learning methods on human extraction features.A supervised fine tuning of the model is then carried out by backpropagation.The Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research object,the effectiveness of the proposed method was verified by a large number of data,and research on visualization of network output,the results shown that the SDAE method is more efficient and more intelligent.
推荐文章
关于Domain半群与Domain半环
Domain半群
D-Clifford半群
Domain半环
准连续Domain和稳定映射
准连续Domain
有界完备准连续Domain
稳定映射
代数L-Domain的函数空间
L-domain
步函数
way-below关系
FZ-Domain的遗传性
FZ-Domain
FZ-Scott拓扑
遗传性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Fault Diagnosis of Motor in Frequency Domain Signal by Stacked De-noising Auto-encoder
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 BIG data deep learning stacked DE-NOISING auto-encoder FOURIER TRANSFORM
年,卷(期) 2018,(11) 所属期刊栏目
研究方向 页码范围 223-242
页数 20页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BIG
data
deep
learning
stacked
DE-NOISING
auto-encoder
FOURIER
TRANSFORM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导