基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统的随机森林算法在随机特征选择时,导致少数比较重要的特征变量被过滤掉的问题,以及没有考虑特征变量相关性对预测应变量准确性带来的影响,提出了一种基于随机森林的自适应特征选择算法SARFFS.该算法首先利用卡方检验样本间关联程度后自助采样,并设计出一种特征对类代表强弱程度的计算方法;然后引入自适应稀疏约束机制Group LASSO优化特征的选择;最后在Spark分布式计算平台利用UCI数据集进行实验,结果表明,相比传统的RF算法,SARFFS算法在特征子集选择上具有更好的性能,在F1上提升将近9%.从最终排名靠前的重要特征分析,该算法能够考虑特征间相关性,对预测结果确实有影响,并有效地提高了随机属性权值的可靠性和稳定性.
推荐文章
基于数据相似度的自适应半监督随机森林算法
随机森林
半监督学习算法
数据相似度
路径集合稀疏编码
自适应
基于特征选择的极限随机森林算法研究
概率相关性
特征选择
特征子集
极限随机森林
基于随机惯性权重的自适应花粉算法
启发式算法
花粉算法
随机惯性权重
转换概率
收敛性能
基于随机森林算法的特征选择及在 fMRI数据中的应用
分类识别
特征提取与选择
随机森林
fM RI数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于随机森林的自适应特征选择算法
来源期刊 计算机技术与发展 学科 工学
关键词 随机森林 自适应 特征选择 GroupLASSO方法
年,卷(期) 2018,(9) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 101-104,111
页数 5页 分类号 TP301.6
字数 3615字 语种 中文
DOI 10.3969/j.issn.1673-629X.2018.09.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑山红 长春工业大学计算机科学与工程学院 60 249 8.0 12.0
2 刘凯 长春工业大学计算机科学与工程学院 6 25 2.0 5.0
3 蒋权 长春工业大学计算机科学与工程学院 4 9 2.0 3.0
4 赵天傲 长春工业大学计算机科学与工程学院 2 22 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (165)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (21)
二级引证文献  (1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(9)
  • 参考文献(1)
  • 二级参考文献(8)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
随机森林
自适应
特征选择
GroupLASSO方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导