基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在构建锂电池状态空间模型基础上,提出一种基于优化粒子滤波的锂电池SOC估计算法,将BP神经网络应用到粒子滤波的权值更新过程中,实现锂电池SOC估计.利用某公司提供的磷酸铁锂电池测试数据,对所提出的算法进行验证,对比算法估计结果与SOC实测结果.结果表明,相对于PF算法,提出的改进算法具有更好的SOC估计性能.
推荐文章
基于RTS-IEKPF算法的锂电池SOC估算
锂电池
SOC估算
RTS-IEKPF
粒子滤波
最优平滑
实验验证
基于IMM-UPF的锂电池寿命估计
锂电池
健康状态
经验模型
交互式多模型
无迹粒子滤波
一种估计锂电池充电状态的分数阶阻抗模型
锂电池充电状态
分数阶阻抗模型
分数阶卡尔曼滤波器
基于权值选择粒子滤波算法的锂离子电池SOC估计
Thevenin 模型
在线参数辨识
SOC 估计
权值选择粒子滤波算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于优化粒子滤波的锂电池SOC估计算法
来源期刊 福州大学学报(自然科学版) 学科 工学
关键词 磷酸铁锂电池 荷电状态 BP神经网络 粒子滤波
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 186-191
页数 6页 分类号 TM912.9
字数 3537字 语种 中文
DOI 10.7631/issn.1000-2243.17084
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏凯雄 福州大学物理与信息工程学院 123 311 8.0 10.0
2 郑明魁 福州大学物理与信息工程学院 26 50 5.0 5.0
3 杨秀芝 福州大学物理与信息工程学院 67 146 6.0 8.0
4 吴兰花 福州大学物理与信息工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (146)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (13)
二级引证文献  (2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
磷酸铁锂电池
荷电状态
BP神经网络
粒子滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福州大学学报(自然科学版)
双月刊
1000-2243
35-1117/N
大16开
福建省福州市大学新区学园路2号
34-27
1961
chi
出版文献量(篇)
4219
总下载数(次)
6
总被引数(次)
24665
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导