基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着社交网络的发展,融合社交信息的推荐成为推荐领域中的一个研究热点.基于矩阵分解的协同过滤推荐方法(简称矩阵分解推荐方法)因其算法可扩展性好及灵活性高等诸多特点,成为研究人员在其基础之上进行社交推荐模型构建的重要原因.围绕基于矩阵分解的社交推荐模型,依据模型的构建方式对社交推荐模型进行综述.在实际数据上,对已有代表性社交推荐方法进行对比,分析各种典型社交推荐模型在不同视角下的性能(如整体用户、冷启动用户、长尾物品).最后,分析了基于矩阵分解的社交推荐模型及其求解算法存在的问题,并对未来研究方向与发展趋势进行展望.
推荐文章
融合隐含信任度和项目关联度的矩阵分解推荐算法
推荐系统
协同过滤
社交网络
隐含信任度
项目关联度
矩阵分解
融合内容与矩阵分解的混合推荐算法
混合推荐
矩阵分解
冷启动
参数优化
局部结构
耦合辅助信息的矩阵分解推荐模型
推荐系统
混合协同过滤
矩阵分解
物品相似度
耦合对象相似度
辅助信息
融合双重正则化机制的低秩矩阵分解推荐模型
推荐系统
协同过滤
矩阵分解
社会化正则
稀疏性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合社交信息的矩阵分解推荐方法研究综述
来源期刊 软件学报 学科 工学
关键词 推荐系统 矩阵分解 社交推荐 社交网络 协同过滤
年,卷(期) 2018,(2) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 340-362
页数 23页 分类号 TP18
字数 19594字 语种 中文
DOI 10.13328/j.cnki.jos.005391
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (90)
共引文献  (429)
参考文献  (30)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(8)
  • 参考文献(3)
  • 二级参考文献(5)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(11)
  • 参考文献(1)
  • 二级参考文献(10)
2008(11)
  • 参考文献(2)
  • 二级参考文献(9)
2009(9)
  • 参考文献(1)
  • 二级参考文献(8)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(8)
  • 参考文献(3)
  • 二级参考文献(5)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(6)
  • 参考文献(3)
  • 二级参考文献(3)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐系统
矩阵分解
社交推荐
社交网络
协同过滤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
论文1v1指导