基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习在高维特征向量的信息提取和分类中具有很强的能力,但深度学习训练时间也比较长,超参数搜索空间大,从而导致超参数寻优较困难.针对此问题,该文提出一种基于受限玻尔兹曼机(RBM)专家乘积系统的改进方法.先将专家乘积系统原理与RBM算法相结合,采用全是真实概率值的参数更新方式会引起模型识别效果不理想和带来密度问题,为此将其更新方式进行改进;为加快网络收敛和提高模型识别能力,采取在RBM预训练阶段和微调阶段引入不同组合方式动量项的一种改进算法.通过对MNIST数据库中的0~9的手写数字体的识别和CMU-PIE数据库的人脸识别实验,提出的算法减少了学习时间,提高了超参数寻优的效率,进而构建的深层网络能获得较好的分类效果.试验结果表明,提出的改进算法在处理高维大量的数据时,计算效率有较大提高,其算法有效.
推荐文章
受限玻尔兹曼机与加权Slope One的混合推荐算法研究
受限玻尔兹曼机
加权SlopeOne
修正余弦相似度
Jaccard相似度
利用深度玻尔兹曼机与典型相关分析的自动图像标注算法
自动图像标注
深度学习
深度玻尔兹曼机
典型相关分析
基于深度玻尔兹曼机的乐器分类问题研究
深度玻尔兹曼机
乐器分类
深度学习
平均场理论
动量项
基于自组织映射与受限玻尔兹曼机的滚动轴承健康评估
序列前向算法
自组织映射
受限玻尔兹曼机
健康评估
滚动轴承
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于受限玻尔兹曼机的专家乘积系统的一种改进算法
来源期刊 电子与信息学报 学科 工学
关键词 深度学习 专家乘积 神经网络 受限玻尔兹曼机 动量
年,卷(期) 2018,(9) 所属期刊栏目 论文
研究方向 页码范围 2173-2181
页数 9页 分类号 TP182|TP183
字数 7370字 语种 中文
DOI 10.11999/JEIT170880
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李宏伟 中国地质大学数理学院 75 473 11.0 17.0
5 沈卉卉 中国地质大学数理学院 24 54 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (122)
共引文献  (187)
参考文献  (16)
节点文献
引证文献  (3)
同被引文献  (18)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(5)
  • 参考文献(0)
  • 二级参考文献(5)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(9)
  • 参考文献(3)
  • 二级参考文献(6)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(13)
  • 参考文献(1)
  • 二级参考文献(12)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(12)
  • 参考文献(1)
  • 二级参考文献(11)
2016(6)
  • 参考文献(4)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
专家乘积
神经网络
受限玻尔兹曼机
动量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
论文1v1指导