基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Rare bird has long been considered an important in the field of airport security,biological conservation,environmental monitoring,and so on.With the development and popularization of IOT-based video surveillance,all day and weather unattended bird monitoring becomes possible.However,the current mainstream bird recognition methods are mostly based on deep learning.These will be appropriate for big data applications,but the training sample size for rare bird is usually very short.Therefore,this paper presents a new sparse recognition model via improved part detection and our previous dictionary learning.There are two achievements in our work:(1)after the part localization with selective search,the gist feature of all bird image parts will be fused as data description;(2)the fused gist feature needs to be learned through our proposed intraclass dictionary learning with regularized K-singular value decomposition.According to above two innovations,the rare bird sparse recognition will be implemented by solving one l1-norm optimization.In the experiment with Caltech-UCSD Birds-200-2011 dataset,results show the proposed method can have better recognition performance than other SR methods for rare bird task with small sample size.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
State of rare earth elements in the rare earth deposits of Northwest Guizhou, China
Kaolinite
Clay rocks
Rare earth deposits
Element existence state
Information extraction
Northwest Guizhou Province
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Rare Bird Sparse Recognition via Part-Based Gist Feature Fusion and Regularized Intraclass Dictionary Learning
来源期刊 计算机、材料和连续体(英文) 学科 医学
关键词 RARE BIRD SPARSE RECOGNITION part detection GIST feature fusion REGULARIZED intraclass dictionary learning
年,卷(期) 2018,(6) 所属期刊栏目
研究方向 页码范围 435-446
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RARE
BIRD
SPARSE
RECOGNITION
part
detection
GIST
feature
fusion
REGULARIZED
intraclass
dictionary
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导