社团发现常用于挖掘复杂网络中的隐藏信息,如功能模块和拓扑结构.为提高复杂网络中社团结构挖掘的质量,提出一种基于加权树的层次社团划分算法HCD_WTree(Hierarchical Community Detection Algorithm Based on Weighted Tree).首先,结合邻域重叠比和节点的度中心性来度量节点间关系强度,基于该度量将原无权网络转换成加权网络;接着,对网络进行简化,得到加权树;最后,基于层次社团挖掘方法,根据边权依序裁剪加权树,得到层次的社团结构,并结合模块度函数获得最优的社团划分结果.在公用数据集上的实验结果表明,与现有的社团挖掘技术相比,HCD_WTree算法能够更准确地划分复杂网络中的社团结构.