基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A novel laboratory simulation method for modeling multi-staged fracturing in a horizontal well was established based on a true tri-axial hydraulic fracturing simulation system. Using this method, the influences of net pressure in hydraulic fracture, stage spacing, perforation parameter, horizontal stress bias and well cementation quality on the propagation geometry of multiple fractures in a tight sandstone formation were studied in detail. The specimen splitting and analogy analysis of fracturing curve patterns reveals: Multiple fractures tend to merge under the condition of high horizontal stress bias and short stage spacing with pre-existing hydraulic fractures under critical closure situation, and the propagation of subsequent fractures is possibly suppressed because of high net pressure in pre-created fractures and asymmetric distribution of fracture width. And the subsequently created fractures are situated in the induced stress decreasing zone due to long stage spacing, leading to weak stress interference, and perforation with intense density and deep penetration facilitates the decrease of initiation fracture pressure. The deflection angle of subsequent fracture and horizontal stress variation tend to be amplified under low horizontal bias with constant net pressure in fractures. The longitudinal fracture is likely to be initiated at the interface of wellbore and concrete sample with poor cementation quality. The initiation fracture pressure of the different stages increases in turn, with the largest increase of 30%. Pressure quickly declines after initiation with low propagation pressure when the transverse hydraulic fracture is formed. The pressure reduces with fluctuation after the initiation of fracture when the fracture deflects, the extension pressure is high, and the fracture formed is tortuous and narrow. There is a violently fluctuant rise of pressure with multiple peak values when longitudinal fracture created, and it is hard to distinguish the features between the initiation stage and propagati
推荐文章
Hydrodynamic characteristics of Wujiangdu Reservoir during the dry season—a case study of a canyon r
Canyon reservoir
Hydrodynamic characteristics
A transition zone
Wujiang River
Spatial characters of nutrients in Wujiangdu Reservoir in karst river, SW China
Wujiangdu Reservoir
Nutrients distribution characteristics
Dam
Using Geomechanical Method to Predict Tectonic Fractures in Low-Permeability Sandstone Reservoirs
Low-permeability sandstone reservoir
Fracture parameters
Geomechanical method
Nitrous oxide (N2O) emissions from a mesotrophic reservoir on the Wujiang River, southwest China
Nitrous oxide
Mesotrophic reservoir
Nitrogen dynamics
IPCC methodology
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir
来源期刊 石油勘探与开发:英文版 学科 工学
关键词 tight SANDSTONE horizontal well multi-staged FRACTURING PERFORATION net pressure in FRACTURE stress interference between FRACTURES FRACTURE propagation
年,卷(期) 2018,(6) 所属期刊栏目
研究方向 页码范围 1129-1138
页数 10页 分类号 TE357.6
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
tight
SANDSTONE
horizontal
well
multi-staged
FRACTURING
PERFORATION
net
pressure
in
FRACTURE
stress
interference
between
FRACTURES
FRACTURE
propagation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
石油勘探与开发:英文版
双月刊
2096-4803
10-1529/TE
北京市海淀区学院路20号
80-232
出版文献量(篇)
331
总下载数(次)
0
总被引数(次)
0
论文1v1指导