基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
For natural language processing problems, the short text classification is still a research hot topic, with obviously problem in the features sparse, high-dimensional text data and feature representation. In order to express text directly, a simple but new variation which employs one-hot with low-dimension was proposed. In this paper, a Densenet-based model was proposed to short text classification. Furthermore, the feature diversity and reuse were implemented by the concat and average shuffle operation between Resnet and Densenet for enlarging short text feature selection. Finally, some benchmarks were introduced to evaluate the Falcon. From our experimental results, the Falcon method obtained significant improvements in the state-of-art models on most of them in all respects, especially in the first experiment of error rate. To sum up, the Falcon is an efficient and economical model, whilst requiring less computation to achieve high performance.
推荐文章
Using Sr isotopes to trace the geographic origins of Chinese mitten crabs
Chinese mitten crab
Lakes
Sr isotopes
Geographic origin
一种适合资源受限设备的Falcon实现
FALCON签名算法
快速傅里叶采样
资源受限
基于 EPICS 的 J-TEXT CODAC系统
CODAC系统
托卡马克
ITER
EPICS
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Falcon: A Novel Chinese Short Text Classification Method
来源期刊 电脑和通信(英文) 学科 工学
关键词 SHORT TEXT Classification Word VECTOR Representation One-Hot Densenet NETWORKS Convolutional NEURAL NETWORKS
年,卷(期) 2018,(11) 所属期刊栏目
研究方向 页码范围 216-226
页数 11页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SHORT
TEXT
Classification
Word
VECTOR
Representation
One-Hot
Densenet
NETWORKS
Convolutional
NEURAL
NETWORKS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导