作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In recent papers, a few physicists studying Black Hole perturbation theory in General Relativity (GR) have tried to construct the initial part of a differential sequence based on the Kerr metric, using methods similar to the ones they already used for studying the Schwarzschild geometry. Of course, such a differential sequence is well known for the Minkowski metric and successively contains the Killing (order 1), the Riemann (order 2) and the Bianchi (order 1 again) operators in the linearized framework, as a particular case of the Vessiot structure equations. In all these cases, they discovered that the compatibility conditions (CC) for the corresponding Killing operator were involving a mixture of both second order and third order CC and their idea has been to exhibit only a minimal number of generating ones. Unhappily, these physicists are neither familiar with the formal theory of systems of partial differential equations and differential modules, nor with the formal theory of Lie pseudogroups. Hence, even if they discovered a link between these differential sequences and the number of parameters of the Lie group preserving the background metric, they have been unable to provide an intrinsic explanation of this fact, being limited by the technical use of Weyl spinors, complex Teukolsky scalars or Killing-Yano tensors. The purpose of this difficult computational paper is to provide differential and homological methods in order to revisit and solve these questions, not only in the previous cases but also in the specific case of any Lie group or Lie pseudogroup of transformations. These new tools, which are now available as computer algebra packages, question the mathematical foundations of GR and the origin of gravitational waves.
推荐文章
电磁感应透明与Kerr非线性效应的增强
电磁感应透明
自发产生相干
Kerr非线性
广义相对论效应下的Kerr场重力加速度
Kerr度规
重力加速度
GR(广义相对论)效应
以Minkowski分形曲线为边界的二维波动方程
Minkowski分形曲线
p型导数
二维波动方程
基于 Minkowski 距离的一致聚类改进算法及应用研究?
一致聚类
Minkowski距离
一致矩阵
聚类数目
工况识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Minkowski, Schwarzschild and Kerr Metrics Revisited
来源期刊 现代物理(英文) 学科 数学
关键词 General Relativity KILLING Operator Riemann TENSOR Weyl TENSOR Bianchi IDENTITIES Lie Algebroid DIFFERENTIAL Sequence DIFFERENTIAL Module Homological Algebra Extension Modules
年,卷(期) 2018,(10) 所属期刊栏目
研究方向 页码范围 1970-2007
页数 38页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
General
Relativity
KILLING
Operator
Riemann
TENSOR
Weyl
TENSOR
Bianchi
IDENTITIES
Lie
Algebroid
DIFFERENTIAL
Sequence
DIFFERENTIAL
Module
Homological
Algebra
Extension
Modules
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代物理(英文)
月刊
2153-1196
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1826
总下载数(次)
0
总被引数(次)
0
论文1v1指导