基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
We search a variety of things over the Internet in our daily lives, and numerous search engines are available to get us more relevant results. With the rapid technological advancement, the internet has become a major source of obtaining information. Further, the advent of the Web2.0 era has led to an increased interaction between the user and the website. It has become challenging to provide information to users as per their interests. Because of copyright restrictions, most of existing research studies are confronting the lack of availability of the content of candidates recommending articles. The content of such articles is not always available freely and hence leads to inadequate recommendation results. Moreover, various research studies base recommendation on user profiles. Therefore, their recommendation needs a significant number of registered users in the system. In recent years, research work proves that Knowledge graphs have yielded better in generating quality recommendation results and alleviating sparsity and cold start issues. Network embedding techniques try to learn high quality feature vectors automatically from network structures, enabling vector-based measurers of node relatedness. Keeping the strength of Network embedding techniques, the proposed citation-based recommendation approach makes use of heterogeneous network embedding in generating recommendation results. The novelty of this paper is in exploiting the performance of a network embedding approach i.e., matapath2vec to generate paper recommendations. Unlike existing approaches, the proposed method has the capability of learning low-dimensional latent representation of nodes (i.e., research papers) in a network. We apply metapath2vec on a knowledge network built by the ACL Anthology Network (all about NLP) and use the node relatedness to generate item (research article) recommendations.
推荐文章
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Using Geomechanical Method to Predict Tectonic Fractures in Low-Permeability Sandstone Reservoirs
Low-permeability sandstone reservoir
Fracture parameters
Geomechanical method
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Knowledge Driven Paper Recommendation Using Heterogeneous Network Embedding Method
来源期刊 电脑和通信(英文) 学科 医学
关键词 Network EMBEDDING Heterogeneous Representation LEARNING Paper-Citation Relations RECOMMENDER System LEARNING LATENT Representations
年,卷(期) 2018,(12) 所属期刊栏目
研究方向 页码范围 157-170
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Network
EMBEDDING
Heterogeneous
Representation
LEARNING
Paper-Citation
Relations
RECOMMENDER
System
LEARNING
LATENT
Representations
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
论文1v1指导