作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In our previous works, we suggest that quantum particles are composite physical objects endowed with the geometric and topological structures of their corresponding differentiable manifolds that would allow them to imitate and adapt to physical environments. In this work, we show that Dirac equation in fact describes quantum particles as composite structures that are in a fluid state in which the components of the wavefunction can be identified with the stream function and the velocity potential of a potential flow formulated in the theory of classical fluids. We also show that Dirac quantum particles can manifest as standing waves which are the result of the superposition of two fluid flows moving in opposite directions. However, for a steady motion a Dirac quantum particle does not exhibit a wave motion even though it has the potential to establish a wave within its physical structure, therefore, without an external disturbance a Dirac quantum particle may be considered as a classical particle defined in classical physics. And furthermore, from the fact that there are two identical fluid flows in opposite directions within their physical structures, the fluid state model of Dirac quantum particles can be used to explain why fermions are spin-half particles.
推荐文章
Test the topographic steady state in an active mountain belt
Taiwan
Uplift
Denudation
River profile
Sediment yield
In-situ 10Be
磁通量子化与Dirac条件
磁通线
波函数
量子化
Dirac函数在信号处理中的冲激效应
Dirac函数
信号处理
广义函数
级数
广义Fourier变换
冲激效应
Fluid properties and sources of Sixiangchang carbonateassociated mercury deposit, southwest China
Trace elements
Carbon and oxygen isotopes
Sulfur isotope
Calcite and dolomite
Youjiang Basin
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Fluid State of Dirac Quantum Particles
来源期刊 现代物理(英文) 学科 数学
关键词 DIRAC Equation Wave MECHANICS Stan FLUID MECHANICS Stream Function Velocity POTENTIAL POTENTIAL Flow General Relativity Maxwell Field Equations CW Complexes Differential Geometry Topology DIFFERENTIABLE MANIFOLDS Topological Transformation
年,卷(期) 2018,(14) 所属期刊栏目
研究方向 页码范围 2402-2419
页数 18页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DIRAC
Equation
Wave
MECHANICS
Stan
FLUID
MECHANICS
Stream
Function
Velocity
POTENTIAL
POTENTIAL
Flow
General
Relativity
Maxwell
Field
Equations
CW
Complexes
Differential
Geometry
Topology
DIFFERENTIABLE
MANIFOLDS
Topological
Transformation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代物理(英文)
月刊
2153-1196
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1826
总下载数(次)
0
总被引数(次)
0
论文1v1指导