基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着电子商务的快速发展,网络销售已成为一个重要的商品销售方式,而在线商品销售的长尾效应,也成为电子商务研究中亟待解决的问题.由于对冷门商品的评价数量少,导致现存的推荐算法很难使用户关注长尾商品,影响了长尾商品的销售,如何提高对长尾商品的推荐显得十分重要.本文提出L RRBM(Latent Dirichlet Allocation-Real Restricted Boltzmann Ma-chines)算法,通过提取用户偏好及商品的主题,结合改进受限玻尔兹曼机对商品未知主题权重的预测,以解决对长尾商品的推荐问题.试验结果表明了本文推荐算法的有效性和可行性.
推荐文章
受限玻尔兹曼机与加权Slope One的混合推荐算法研究
受限玻尔兹曼机
加权SlopeOne
修正余弦相似度
Jaccard相似度
基于深度玻尔兹曼机的乐器分类问题研究
深度玻尔兹曼机
乐器分类
深度学习
平均场理论
动量项
玻尔兹曼熵和克劳修斯熵的关系
玻尔兹曼熵
克劳修斯熵
广泛
利用深度玻尔兹曼机与典型相关分析的自动图像标注算法
自动图像标注
深度学习
深度玻尔兹曼机
典型相关分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多主题受限玻尔兹曼机的长尾分布推荐研究
来源期刊 小型微型计算机系统 学科 工学
关键词 受限玻尔兹曼机 长尾分布 LDA主题模型 推荐系统
年,卷(期) 2018,(2) 所属期刊栏目 人工智能与算法研究
研究方向 页码范围 304-309
页数 6页 分类号 TP311
字数 6829字 语种 中文
DOI 10.3969/j.issn.1000-1220.2018.02.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴国栋 安徽农业大学信息与计算机学院 42 121 6.0 9.0
5 张倩 安徽农业大学信息与计算机学院 5 31 4.0 5.0
6 史明哲 安徽农业大学信息与计算机学院 3 5 1.0 2.0
7 疏晴 安徽农业大学信息与计算机学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (461)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (11)
二级引证文献  (2)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(6)
  • 参考文献(2)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
受限玻尔兹曼机
长尾分布
LDA主题模型
推荐系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导