作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对大坝变形预测中非平稳非线性的数据处理问题,为克服多元线性回归模型(MLR)在处理非线性数据方面的不足,将小波神经网络模型(WNN)引入到多元线性回归模型里面,提出一种基于多元线性回归和小波神经网络的大坝变形预测模型(MLR-WNN).首先,针对温度、水位、时效因子和大坝变形实测值,建立多元线性回归模型,再对其产生的误差建立小波神经网络模型进行修正,最后得到大坝变形预测值.经算例验证并与多元回归模型和WNN模型对比分析,结果表明,该算法预测精度较高,在大坝变形波动剧烈的时段也能保证较好的预测效果.
推荐文章
基于DPSO-ANFIS的大坝变形预测模型
自适应模糊神经网络
动态权重粒子群算法
大坝变形预测
适应度
基于进化神经网络混凝土大坝变形预测
人工神经网络
变形预报
混凝土大坝
遗传算法
基于GM(1,1)-MC的大坝变形预测模型
大坝变形
灰色模型
马尔科夫链
GM(1,1)-MC模型
基于最小二乘支持向量机的大坝变形预测研究
大坝变形
最小二乘支持向量机
优化
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MLR-WNN的大坝变形预测
来源期刊 水力发电 学科 工学
关键词 大坝变形 预测 MLR-WNN模型
年,卷(期) 2018,(1) 所属期刊栏目 安全监测与评价
研究方向 页码范围 102-105
页数 4页 分类号 TP183|TV698.11
字数 2501字 语种 中文
DOI 10.3969/j.issn.0559-9342.2018.01.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 任超 桂林理工大学测绘地理信息学院 67 227 9.0 12.0
5 杨庆 桂林理工大学测绘地理信息学院 5 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (92)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (14)
二级引证文献  (0)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(15)
  • 参考文献(0)
  • 二级参考文献(15)
2006(9)
  • 参考文献(1)
  • 二级参考文献(8)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(11)
  • 参考文献(1)
  • 二级参考文献(10)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(2)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大坝变形
预测
MLR-WNN模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水力发电
月刊
0559-9342
11-1845/TV
大16开
北京西城区德外六铺炕北小街2号
2-428
1954
chi
出版文献量(篇)
7774
总下载数(次)
11
总被引数(次)
33587
论文1v1指导