摘要:
土壤属性空间分布受地学环境要素影响,空间分异特征十分明显,单一的全局插值模型在应用中常受到一定条件的限制.对复杂地貌类型区土壤属性插值所面临的空间不连续、全局插值模型精度有限以及适应性差的缺点,提出了一种融合地学环境信息的土壤属性自适应曲面建模方法(Adaptive surface modeling for soil properties,ASM-SP).利用2013年采集的110个样点数据,以土壤全钾含量为例,利用ASM-SP、普通克里格法(Ordinary Kriging,OK)、回归克里格法(Regression Kriging,RK)、地理加权回归克里格法(Geographically Weighted Regression Kriging,GWRK)和协同克里格(Ordinary Co-Kriging,OCK)5种插值方法,分别模拟了青海湖流域典型地区土壤全钾含量的空间分布.采用平均误差(Mean Error,ME)、平均相对误差(Mean Relative Error,MRE)、均方根误差(Root Mean Square Error,RMSE)、准确度(Accuracy,AC)、相关系数、回归系数和决定系数7类指标系统评价不同插值方法的预测效果.结果 表明:(1)利用常规插值(OK)得到的插值曲面较为平滑,具有弱“牛眼”效应,在刻画土壤全钾含量的空间变异性方面存在明显不足,精度有待提高.(2)在融合地学环境信息的插值方法中,RK,OCK,GWRK和ASM-SP模拟精度较OK有不同程度提高,其中ASM-SP在刻画土壤全钾含量的空间变异和局部细节信息方面表现突出,精度较其他插值方法有较大程度提高,其准确度较OK,RK,GWRK和OCK分别提高9.27%,6.29%,2.66%和7.74%.ASM-SP尤其适合复杂地貌类型区,因其考虑了地学环境变量与土壤属性的非线性关系,并融合了多个模型的适应性优势,其在刻画土壤属性空间分异的复杂性方面也更加符合实际情况,为土壤属性的空间模拟提供了新思路.