基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对中文散文诗歌的自动生成,提出一种基于循环神经网络的时序性文本生成方法.通过现有语料库构建好一个词语集后,首先给定若干关键词,在聚类模型生成的词语集基础上进行关键词扩展生成首句.在确定首句的基础上,利用上下文模型对已生成内容进行压缩和上文特征获取,最后将之前上下文内容传递给递归神经网络模型实现后续句子的生成.该方法中首句生成的过程利用语言模型中的词汇集扩展,并通过上下文模型获取关联实现上下句的映射关系.本文采用BLEU自动评测方式和人工评测方式,建立起较为标准的评测系统,实验结果证实了该方法的有效性.
推荐文章
基于序列到序列神经网络模型的古诗自动生成方法
扩展
注意力机制
序列到序列
神经网络模型
古诗生成
基于递归神经网络的多步预报方法
多步预报
神经网络
时间序列
开掘不可替代的散文诗质--读章闻哲的散文诗
章闻哲
散文诗
《在陆地上》
《绿伯》
象征主义
五四新诗革命中的“散文诗”
文学革命
散文诗
概念的误读
文体意识生成
矛盾性内涵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于递归神经网络的散文诗自动生成方法
来源期刊 计算机系统应用 学科
关键词 深度学习 递归神经网络 卷积神经网路
年,卷(期) 2018,(8) 所属期刊栏目 研究开发
研究方向 页码范围 259-264
页数 6页 分类号
字数 5634字 语种 中文
DOI 10.15888/j.cnki.csa.006318
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 詹国华 杭州师范大学信息科学与技术学院 44 401 9.0 19.0
2 李志华 杭州师范大学信息科学与技术学院 14 44 3.0 6.0
3 姜力 杭州师范大学信息科学与技术学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (211)
参考文献  (12)
节点文献
引证文献  (4)
同被引文献  (5)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(11)
  • 参考文献(1)
  • 二级参考文献(10)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
递归神经网络
卷积神经网路
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
相关基金
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
论文1v1指导