基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
结合现有基于卷积神经网络的图像分类算法,以CIFAR-10作为数据集,探究如何快速搭建一个满足分类精度要求的卷积神经网络模型,以及如何有目的且高效地进行网络训练与参数调整.实验以简单的三层卷积神经网络为基础,从数据增强 、网络结构与优化训练3个方面对模型进行改进.实验结果表明,通过叠加这些改进方法,可使模型的拟合能力与泛化能力逐渐增强,最终获得更高的图像分类准确率.
推荐文章
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
基于多层卷积神经网络的SAR图像分类方法
雷达目标识别
卷积神经网络
深度学习
MSTAR数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的图像分类研究
来源期刊 软件导刊 学科 工学
关键词 图像分类 卷积神经网络 网络结构 数据增强
年,卷(期) 2018,(10) 所属期刊栏目 人工智能
研究方向 页码范围 27-31
页数 5页 分类号 TP301
字数 4003字 语种 中文
DOI 10.11907/rjdk.181090
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙国强 上海理工大学光电信息与计算机工程学院 64 308 9.0 15.0
2 葛程 上海理工大学光电信息与计算机工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (604)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (32)
二级引证文献  (1)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(13)
  • 参考文献(0)
  • 二级参考文献(13)
2016(12)
  • 参考文献(1)
  • 二级参考文献(11)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图像分类
卷积神经网络
网络结构
数据增强
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
论文1v1指导