基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Fog computing is an emerging architecture intended for alleviating the network burdens at the cloud and the core network by moving resource-intensive functionalities such as computation, communication, storage, and analytics closer to the End Users (EUs). In order to address the issues of energy efficiency and latency requirements for the time-critical Internet-of-Things (IoT) applications, fog computing systems could apply intelligence features in their operations to take advantage of the readily available data and computing resources. In this paper, we propose an approach that involves device-driven and human-driven intelligence as key enablers to reduce energy consumption and latency in fog computing via two case studies. The first one makes use of the machine learning to detect user behaviors and perform adaptive low-latency Medium Access Control (MAC)-layer scheduling among sensor devices. In the second case study on task offloading, we design an algorithm for an intelligent EU device to select its offloading decision in the presence of multiple fog nodes nearby, at the same time, minimize its own energy and latency objectives. Our results show a huge but untapped potential of intelligence in tackling the challenges of fog computing。
推荐文章
基于时间序列分析方法的FOG随机漂移建模与辨识
参数估计
时间序列分析
光纤陀螺
卡尔曼滤波/平滑
德国版智能电网“E-Energy”
智能电网
E-Energy
能源互联网
分布式能源
I-FOG光电转换电路稳定性分析与设计
干涉式光纤陀螺
光电转换
稳定性
FOG SINS/GPS组合导航系统不同步时间的鉴定方法
FOG
SINS/GPS
时间同步
鉴定方法
零偏估计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Enabling intelligence in fog computing to achieve energy and latency reduction
来源期刊 数字通信与网络:英文版 学科 工学
关键词 FOG COMPUTING Edge COMPUTING Machine learning MAC scheduling Computational OFFLOADING ENERGY efficiency
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 3-9
页数 7页 分类号 TN
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FOG
COMPUTING
Edge
COMPUTING
Machine
learning
MAC
scheduling
Computational
OFFLOADING
ENERGY
efficiency
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字通信与网络:英文版
季刊
2468-5925
50-1212/TN
重庆南岸区崇文路2号重庆邮电大学数字通信
78-45
出版文献量(篇)
11481
总下载数(次)
2
总被引数(次)
0
论文1v1指导