摘要:
利用太阳光在光催化材料作用下将低能量密度的太阳能转化成化学能储存在氢气和一氧化碳等清洁能源中, 有利于能量的存储、运输和使用, 具有广阔的前景. 光催化技术的关键在于催化剂, 以TiO2为代表的传统半导体光催化剂存在着电子与空穴复合率高、禁带宽度过大和无法吸收可见光等缺点, 这些因素限制了其在光催化领域的进一步发展和应用. 因此, 寻找优秀的光催化材料是科研工作者的不懈追求.
石墨相氮化碳是一种仅由C和N两种元素组成的有机半导体材料, 具有良好的热稳定、耐腐蚀性和生物相容性, 这些优点使得石墨相氮化碳在多个领域都极具应用前景. 在光催化领域, 石墨相氮化碳独特的电子结构、稳定的物理化学性质,以及其导带位置(约–1.12 eV)远小于氢离子的还原电势(0 eV), 使其能够很好地应用于光解化降解污染物和光解水产氢.
目前, 石墨相氮化碳光催化技术的研究重点在于如何解决石墨相氮化碳比表面积过小和光量子效率低的问题. 针对这些问题, 我们对石墨相氮化碳光催化材料的结构进行了设计, 构建出CdS修饰的一维g-C3N4多孔纳米管. 以三聚氰胺为原料, 通过质子化处理, 得到表面光滑、质地均匀、拥有超高长径比的三聚氰胺纳米纤维(MNFs), 然后对其进行煅烧处理得到多孔纳米管状g-C3N4催化剂. 随后, 在纳米管的基础上通过水热法与CdS颗粒复合, 成功制备出多孔管状g-C3N4/CdS复合异质结型催化剂. 利用多种表征手段对所合成的新型光催化剂的形貌、结构、光学性质及光电性质进行了表征, 并评估了 其光催化降解罗丹明B和光解水产氢性能, 考察了催化剂的循环利用及稳定性.
SEM和TEM结果表明, 管状的石墨相氮化碳拥有丰富的孔道结构, 其增大的比表面积有利于暴露更多的活性位点, 从而提高了光催化性能. 光催化降解罗丹明B实验表明, 多孔管状g-C3N4的催化性能较体相g-C3N4有明显提高. 当管状g-C3N4与适量CdS复合形成异质结型光催化剂时, 光催化效果得到进一步提升, 其中当CdS负载量为10 mol%时, 复合物的催化效果最好, 在60 min内可完全降解罗丹明B. 在光催化分解水产氢实验中, 5 h内管状g-C3N4/CdS复合物产氢量高达362.7 μmol, 分别是体相g-C3N4的16.3倍和管状g-C3N4的4.6倍.