基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The Web development has drastically changed the human interaction and communication, leading to an exponential growth of data generated by users in various digital media. This mass of data provides opportunities for understanding people’s opinions about products, services, processes, events, political movements, and organizational strategies. In this context, it becomes important for companies to be able to assess customer satisfaction about their products or services. One of the ways to evaluate customer sentiment is the use of Sentiment Analysis, also known as Opinion Mining. This research aims to compare the efficiency of an automatic classifier based on dictionary with the classification by human jurors in a set of comments made by customers in Portuguese language. The data consist of opinions of service users of one of the largest Brazilian online employment agencies. The performance evaluation of the classification models was done using Kappa index and a Confusion Matrix. As the main finding, it is noteworthy that the agreement between the classifier and the human jurors came to moderate, with better performance for the dictionary-based classifier. This result was considered satisfactory, considering that the Sentiment Analysis in Portuguese language is a complex task and demands more research and development.
推荐文章
P vs. NP问题研究状态及其对密码学的意义
P vs.NP
密码学
NP完全
计算复杂性
MSP
Real与Media流媒体技术比较
Real
Media
流媒体
比较
Incorporation of silica into the goethite structure: a microscopic and spectroscopic study
Quartz
Goethite
Twinned goethite
Microscopic characterization (FESEM and TEM)
FT-IR spectroscopy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 “If We Only Knew How You Feel”—A Comparative Study of Automated vs. Manual Classification of Opinions of Customers on Digital Media
来源期刊 社交网络(英文) 学科 医学
关键词 SENTIMENT Analysis OPINION Mining Social Media
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 74-83
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SENTIMENT
Analysis
OPINION
Mining
Social
Media
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
社交网络(英文)
季刊
2169-3285
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
112
总下载数(次)
0
总被引数(次)
0
论文1v1指导