基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前互联网上会存在海量的网络流量数据信息,这些海量的网络流量数据信息还未得到充分性的利用,如果有效的采取一些必要的方法或者手段,分析整个的网络流量挖掘信息对于后期的网络发展趋势,挖掘网络当中所存在的异常状态并且有采取针对性的措施,这对于后期的网络应急响应能力的增强、抵御网络不法攻击行为、快速的维护网络空间安全等方面都具有非常重大的价值及意义.本文基于网络流量识别的基本需求,分析了深度学习经典模型-CNN的基本原理,在此基础上将原始流量进行分层处理,并建立了基于注意力机制的改进的CNN算法的网络流量识别模型,最后在国际标准数据集上进行仿真分析.实验测试结果表明,该模型可以实现对各类网络流量有效识别.
推荐文章
网络流量分类与应用识别的研究
流量分类
应用识别
机器学习
无监督聚类
有监督分类
基于深度学习的网络流量异常检测方法
网络安全
流量异常
流量检测
深度学习
基于有督导机器学习的网络流量识别系统
有督导机器学习
网络流量识别
LSSVM
协同量子粒子群优化算法
基于GA-CFS和AdaBoost算法的网络流量分类
流量分类
相关性特征选择
适应度函数
AdaBoost算法
弱分类器
权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的网络流量分类识别研究
来源期刊 天津理工大学学报 学科 工学
关键词 网络流量识别 注意力机制 识别算法
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 35-40
页数 6页 分类号 TP393.0
字数 4825字 语种 中文
DOI 10.3969/j.issn.1673-095X.2019.06.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨文军 天津理工大学计算机科学与工程学院 5 3 1.0 1.0
2 张家颖 天津理工大学计算机科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (3)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(13)
  • 参考文献(5)
  • 二级参考文献(8)
2017(5)
  • 参考文献(4)
  • 二级参考文献(1)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络流量识别
注意力机制
识别算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
天津理工大学学报
双月刊
1673-095X
12-1374/N
大16开
天津市西青区宾水西道391号
1984
chi
出版文献量(篇)
2405
总下载数(次)
4
总被引数(次)
13943
论文1v1指导