钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机测量与控制期刊
\
小样本深度学习方法实现LED TV屏缺陷检测
小样本深度学习方法实现LED TV屏缺陷检测
作者:
周永福
曾志
罗中良
原文服务方:
计算机测量与控制
机器视觉
迁移学习
增量学习
FCNet
LED TV
缺陷检测
摘要:
为实现当前工业4.0时代电子类企业智能制造的全过程,引入机器视觉完成产品的缺陷检测,用于解决缺陷问题多样性导致算法能力不足的问题;首先对已标注小样本数据集通过深度学习得到初始特征模型,接着针对该特征模型施以迁移学习方法用以实现LED TV的检测,并将已检测样本进一步用于增量学习完成模型参数的修正,最后采用全连接神经网络FCNet (FullyConnected Neural Network)完成分类,探讨了一种运用机器视觉实现LED TV的光学屏检技术;并给出了检测样品作为补充的样本数据集增量学习模型;实践表明,所提出的方法能进一步提升工业机器人智能制造阶段自动化检测的准确率,最终实现工业生产的柔性和智能化水平,并为机器视觉的应用提供示范.
下载原文
收藏
引用
分享
推荐文章
浮空器主缆绳表面的小样本学习缺陷检测研究
缺陷检测
小样本学习
度量学习
浮空器
基于特征关系依赖网络的小样本学习方法
深度学习
小样本学习
度量学习
特征优化
原型调整
基于边缘感知和小样本学习的多尺度带钢表面缺陷分割方法
语义分割
表面缺陷检测
小样本学习
特征金字塔注意力
全局注意力上采样模块
基于小样本学习的地面结露结霜现象检测方法
地面气象观测
结露现象检测
结霜现象检测
特征提取
语义描述
图像分类
内容分析
文献信息
版权信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
小样本深度学习方法实现LED TV屏缺陷检测
来源期刊
计算机测量与控制
学科
关键词
机器视觉
迁移学习
增量学习
FCNet
LED TV
缺陷检测
年,卷(期)
2019,(11)
所属期刊栏目
测试与故障诊断
研究方向
页码范围
11-15
页数
5页
分类号
TP242.62
字数
语种
中文
DOI
10.16526/j.cnki.11-4762/tp.2019.11.003
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
周永福
河源职业技术学院电子与信息工程学院
28
59
4.0
7.0
2
罗中良
惠州学院电子信息与电气工程学院
67
241
8.0
12.0
3
曾志
惠州学院信息科学技术学院
23
90
4.0
9.0
传播情况
被引次数趋势
(/次)
(/年)
版权信息
全文
全文.pdf
引文网络
引文网络
二级参考文献
(39)
共引文献
(63)
参考文献
(13)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1946(1)
参考文献(0)
二级参考文献(1)
1951(1)
参考文献(0)
二级参考文献(1)
1968(1)
参考文献(0)
二级参考文献(1)
1988(1)
参考文献(0)
二级参考文献(1)
1990(1)
参考文献(0)
二级参考文献(1)
1994(1)
参考文献(0)
二级参考文献(1)
1995(1)
参考文献(0)
二级参考文献(1)
1996(1)
参考文献(0)
二级参考文献(1)
1997(1)
参考文献(0)
二级参考文献(1)
2000(1)
参考文献(0)
二级参考文献(1)
2001(1)
参考文献(0)
二级参考文献(1)
2003(3)
参考文献(1)
二级参考文献(2)
2004(2)
参考文献(0)
二级参考文献(2)
2005(3)
参考文献(0)
二级参考文献(3)
2006(4)
参考文献(0)
二级参考文献(4)
2007(1)
参考文献(0)
二级参考文献(1)
2008(1)
参考文献(1)
二级参考文献(0)
2009(1)
参考文献(0)
二级参考文献(1)
2010(2)
参考文献(2)
二级参考文献(0)
2011(2)
参考文献(0)
二级参考文献(2)
2012(4)
参考文献(0)
二级参考文献(4)
2013(3)
参考文献(2)
二级参考文献(1)
2014(2)
参考文献(0)
二级参考文献(2)
2015(7)
参考文献(2)
二级参考文献(5)
2016(4)
参考文献(3)
二级参考文献(1)
2017(1)
参考文献(1)
二级参考文献(0)
2018(1)
参考文献(1)
二级参考文献(0)
2019(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
迁移学习
增量学习
FCNet
LED TV
缺陷检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
主办单位:
中国计算机自动测量与控制技术协会
出版周期:
月刊
ISSN:
1671-4598
CN:
11-4762/TP
开本:
大16开
出版地:
北京市海淀区阜成路甲8号
邮发代号:
创刊时间:
1993-01-01
语种:
汉
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
1.
浮空器主缆绳表面的小样本学习缺陷检测研究
2.
基于特征关系依赖网络的小样本学习方法
3.
基于边缘感知和小样本学习的多尺度带钢表面缺陷分割方法
4.
基于小样本学习的地面结露结霜现象检测方法
5.
基于深度学习的磁芯表面缺陷检测研究
6.
基于深度学习的木材缺陷图像检测方法
7.
图像场景识别中深度学习方法综述
8.
基于深度学习的金属焊接管道内壁缺陷检测方法研究
9.
基于深度主动学习的磁片表面缺陷检测
10.
海量数据环境下用于入侵检测的深度学习方法
11.
面向人体行为识别的深度特征学习方法比较
12.
基于深度学习方法的复杂场景下车辆目标检测
13.
基于深度学习的标签缺陷检测系统应用
14.
基于深度神经网络的少样本学习综述
15.
任务相关的图像小样本深度学习分类方法研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机测量与控制1998
计算机测量与控制1999
计算机测量与控制2000
计算机测量与控制2001
计算机测量与控制2002
计算机测量与控制2003
计算机测量与控制2004
计算机测量与控制2005
计算机测量与控制2006
计算机测量与控制2007
计算机测量与控制2008
计算机测量与控制2009
计算机测量与控制2010
计算机测量与控制2011
计算机测量与控制2012
计算机测量与控制2013
计算机测量与控制2014
计算机测量与控制2015
计算机测量与控制2016
计算机测量与控制2017
计算机测量与控制2018
计算机测量与控制2019
计算机测量与控制2020
计算机测量与控制2023
计算机测量与控制2024
计算机测量与控制2019年第11期
计算机测量与控制2019年第10期
计算机测量与控制2019年第1期
计算机测量与控制2019年第4期
计算机测量与控制2019年第7期
计算机测量与控制2019年第5期
计算机测量与控制2019年第6期
计算机测量与控制2019年第3期
计算机测量与控制2019年第2期
计算机测量与控制2019年第9期
计算机测量与控制2019年第8期
计算机测量与控制2019年第12期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号