原文服务方: 计算机应用研究       
摘要:
针对传统浅层机器学习方法无法有效解决海量入侵数据的分类问题,提出了一种基于深度信念网络的多类支持向量机入侵检测(DBN-MSVM)方法.该方法利用深度信念网络对大量高维、非线性的无标签原始数据进行特征降维,从而获得原始数据的最优低维表示;利用二叉树构造多类支持向量机分类器,并对获得的最优低维表示进行网络攻击行为识别.最后在KDD'99数据集上进行实验仿真,DBN-MSVM方法可缩短支持向量机分类器的训练时间和测试时间,提高了海量入侵数据的分类准确率.
推荐文章
基于深度迁移学习的网络入侵检测
深度自编码器
迁移学习
入侵检测
嵌入层
标签层
小样本深度学习方法实现LED TV屏缺陷检测
机器视觉
迁移学习
增量学习
FCNet
LED TV
缺陷检测
基于贝叶斯网络的海量数据多维分类学习方法研究
多维分类
贝叶斯网络
机器学习
海量数据
基于深度序列加权核极限学习的入侵检测算法
深度信念网络
序列学习
核极限学习
样本加权
入侵检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 海量数据环境下用于入侵检测的深度学习方法
来源期刊 计算机应用研究 学科
关键词 入侵检测 深度学习 支持向量机 深度信念网络
年,卷(期) 2018,(4) 所属期刊栏目 信息安全技术
研究方向 页码范围 1197-1200
页数 4页 分类号 TP309.2
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2018.04.050
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高岭 西北大学信息科学与技术学院 96 1019 17.0 28.0
2 贺毅岳 西北大学经济管理学院 30 244 9.0 15.0
3 高妮 西安财经学院信息学院 8 120 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (17)
参考文献  (6)
节点文献
引证文献  (37)
同被引文献  (141)
二级引证文献  (38)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(47)
  • 引证文献(23)
  • 二级引证文献(24)
2020(25)
  • 引证文献(11)
  • 二级引证文献(14)
研究主题发展历程
节点文献
入侵检测
深度学习
支持向量机
深度信念网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导