原文服务方: 微电子学与计算机       
摘要:
针对深度神经网络用于入侵检测方法时存在训练过程中由于数据不平衡和特征冗余两大问题而导致的低检测率和高误报率,提出一种基于二次决策的深度学习模型(TDDL).该模型由深度堆栈自动编码器(DSAE)和神经网络结合,包括二个阶段特征学习,其中第一阶段使用DSAE对特征压缩并加入区分异常数据的概率值特征,第二阶段使用神经网络(NN)接收第一阶段的特征并训练,从而降低特征冗余和平衡对正常数据的偏向,以提高检测效果.经KDDCUP99数据集进行实验测试,仿真实验结果表明,该模型能有效提升深度神经网络在入侵检测数据上特征学习的效果,使其具有更高的准确率的同时,还具有较低的误报率.
推荐文章
基于深度迁移学习的网络入侵检测
深度自编码器
迁移学习
入侵检测
嵌入层
标签层
基于深度学习的入侵检测算法
深度学习
网络安全
入侵检测
卷积神经网络
可视化处理
KDD CUP99
基于深度序列加权核极限学习的入侵检测算法
深度信念网络
序列学习
核极限学习
样本加权
入侵检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二次决策的深度学习入侵检测模型
来源期刊 微电子学与计算机 学科
关键词 深度学习 入侵检测 自动编码器 特征学习
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 32-36
页数 5页 分类号 TP309
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 江泽涛 桂林电子科技大学广西图像图形与智能处理重点实验室 32 62 4.0 7.0
2 翟振宇 桂林电子科技大学广西图像图形与智能处理重点实验室 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
入侵检测
自动编码器
特征学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导