原文服务方: 计算机应用研究       
摘要:
针对海量多源异构且数据分布不平衡的网络入侵检测问题以及传统深度学习算法无法根据实时入侵情况在线更新其输出权重的问题,提出了一种基于深度序列加权核极限学习的入侵检测算法(DBN-WOS-KELM算法).该算法先使用深度信念网络DBN对历史数据进行学习,完成对原始数据的特征提取和数据降维,再利用加权序列核极限学习机进行监督学习完成入侵识别,结合了深度信念网络提取抽象特征的能力以及核极限学习机的快速学习能力.最后在部分KDD99数据集上进行了仿真实验,实验结果表明DBN-WOS-KELM算法提高了对小样本攻击的识别率,并且能够根据实际情况在线更新输出权重,训练效率更高.
推荐文章
基于深度学习的入侵检测算法
深度学习
网络安全
入侵检测
卷积神经网络
可视化处理
KDD CUP99
基于加权移动窗口的入侵检测算法研究
入侵检测系统模型
数据挖掘
移动窗口算法
加权移动窗口
网络数据流
频繁集
支持度
基于麻雀搜索优化深度极限学习机的入侵检测方法
麻雀搜索算法
深度极限学习机
入侵检测
随机游走
基于锚框的深度学习物体目标检测算法概览
深度学习
卷积神经网络
一阶段检测
二阶段检测
数据集
分类预测
位置回归
锚框
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度序列加权核极限学习的入侵检测算法
来源期刊 计算机应用研究 学科
关键词 深度信念网络 序列学习 核极限学习 样本加权 入侵检测
年,卷(期) 2020,(3) 所属期刊栏目 信息安全技术
研究方向 页码范围 829-832
页数 4页 分类号 TP393.08
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.08.0653
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汪洋 兰州交通大学电子与信息工程学院 21 121 8.0 10.0
2 伍忠东 兰州交通大学电子与信息工程学院 32 256 6.0 15.0
3 朱婧 兰州交通大学电子与信息工程学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (6)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度信念网络
序列学习
核极限学习
样本加权
入侵检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导