基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
SVM有着很强的学习能力,已经成为入侵检测的重要算法之一。由于入侵检测原始数据量大,且具有高维性、冗余性等特点,导致传统SVM入侵检测算法计算量大、预测时间长。基于此,文中提出一种改进的SVM入侵检测算法( KP-CA-GA-LC-SVM)。文中利用核主成分分析法( KPCA)进行数据的特征提取,降低数据维数和计算量;使用两个核函数线性加权结合形成的组合核函数代替传统的单一核函数,并通过遗传算法( GA)进行SVM核参数及组合核权系数的寻优,来提高SVM性能。实验结果表明,文中算法有效地提高了入侵检测的检测精度。
推荐文章
基于深度序列加权核极限学习的入侵检测算法
深度信念网络
序列学习
核极限学习
样本加权
入侵检测
粒子群算法和SVM的网络入侵检测
粒子群算法
支持向量机
网络入侵
检测算法
基于云计算平台的网络入侵检测算法研究与实现
云计算
入侵检测系统
MR GA-BP均值法
Hadoop
基于SSA-SVM的网络入侵检测研究
麻雀搜索算法
误报率
支持向量机
网络入侵
检测率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA和组合核的SVM入侵检测算法
来源期刊 计算机技术与发展 学科 工学
关键词 入侵检测 核主成分分析法 支持向量机 遗传算法
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 148-151
页数 4页 分类号 TP301.6
字数 3756字 语种 中文
DOI 10.3969/j.issn.1673-629X.2015.02.034
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李雷 82 539 12.0 18.0
2 陈桂林 1 4 1.0 1.0
3 王生光 1 4 1.0 1.0
4 徐静妹 3 21 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (332)
参考文献  (11)
节点文献
引证文献  (4)
同被引文献  (31)
二级引证文献  (17)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(9)
  • 参考文献(1)
  • 二级参考文献(8)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(7)
  • 引证文献(1)
  • 二级引证文献(6)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
入侵检测
核主成分分析法
支持向量机
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导