原文服务方: 微电子学与计算机       
摘要:
入侵检测问题可以模型化为数据流分类问题,传统的数据流分类算法需要标注大量的训练样本,代价昂贵,降低了相关算法的实用性。在PU学习算法中,仅需标注部分正例样本就可以构造分类器。对此本文提出一种动态的集成PU学习数据流分类的入侵检测方法,只需要人工标注少量的正例样本,就可以构造数据流分类器。在人工数据集和真实数据集上的实验表明,该方法具有较好的分类性能,在处理偏斜数据流上优于三种PU 学习分类方法,并具有较高的入侵检测率。
推荐文章
基于堆叠集成的数据流分类
堆叠集成
数据流分类
概念漂移
基于多数据流分析的木马检测方法
数据流
Bagging
木马检测
C4.5决策树
数据流中概念漂移检测的集成分类器设计
数据挖掘
数据流
概念漂移
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于集成 PU 学习数据流分类的入侵检测方法
来源期刊 微电子学与计算机 学科
关键词 入侵检测 集成分类 数据流 学习
年,卷(期) 2013,(7) 所属期刊栏目
研究方向 页码范围 173-176
页数 4页 分类号 TP393.08
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张骏 西北工业大学自动化学院 83 669 13.0 23.0
2 宋群 西北工业大学自动化学院 6 31 3.0 5.0
3 智永锋 西北工业大学自动化学院 18 69 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (11)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
入侵检测
集成分类
数据流
学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
论文1v1指导