作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.
推荐文章
高阶Bernoulli数和高阶Bernoulli多项式
Bernoulli数
高阶Bernoulli数
Bernoulli多项式
高阶Bernoulli多项式
递推公式
Bernoulli数与判别素数的充要条件
等和幂和
Bernoulli数
充要条件
Bernoulli卷积测度的谱性质
迭代函数系
正交集
谱测度
Bernoulli不等式的优化推广及其应用
不等式
幂平均
连续开拓
猜想
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Powers Sums, Bernoulli Numbers, Bernoulli Polynomials Rethinked
来源期刊 应用数学(英文) 学科 数学
关键词 BERNOULLI Numbers BERNOULLI POLYNOMIALS POWERS SUMS Faulhaber CONJECTURE Shift OPERATOR OPERATOR Calculus
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 100-112
页数 13页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BERNOULLI
Numbers
BERNOULLI
POLYNOMIALS
POWERS
SUMS
Faulhaber
CONJECTURE
Shift
OPERATOR
OPERATOR
Calculus
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导