基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Although big data are widely used in various fields,its application is still rare in the study of mining subsidence prediction(MSP)caused by underground mining.Traditional research in MSP has the problem of oversimplifying geological mining conditions,ignoring the fluctuation of rock layers with space.In the context of geospatial big data,a data-intensive FLAC3D(Fast Lagrangian Analysis of a Continua in 3 Dimensions)model is proposed in this paper based on borehole logs.In the modeling process,we developed a method to handle geospatial big data and were able to make full use of borehole logs.The effectiveness of the proposed method was verified by comparing the results of the traditional method,proposed method,and field observation.The findings show that the proposed method has obvious advantages over the traditional prediction results.The relative error of the maximum surface subsidence predicted by the proposed method decreased by 93.7%and the standard deviation of the prediction results(which was 70 points)decreased by 39.4%,on average.The data-intensive modeling method is of great significance for improving the accuracy of mining subsidence predictions.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Data-Intensive FLAC^3D Computation Model:Application of Geospatial Big Data to Predict Mining Induced Subsidence
来源期刊 工程与科学中的计算机建模(英文) 学科 工学
关键词 GEOSPATIAL big data MINING SUBSIDENCE prediction FLAC3D underground coal MINING
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 395-408
页数 14页 分类号 TD3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GEOSPATIAL
big
data
MINING
SUBSIDENCE
prediction
FLAC3D
underground
coal
MINING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程与科学中的计算机建模(英文)
月刊
1526-1492
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
299
总下载数(次)
1
总被引数(次)
0
论文1v1指导