基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高边坡稳定性预测的精度,保障边坡工程的安全,提出基于粒子群优化算法支持向量机的预测模型.采用粒子群优化算法不断进行搜索迭代获取支持向量机模型的最优参数,避免了支持向量机人为选取参数的盲目性和随意性.通过Matlab编程,应用实例证明:该模型的预测精度较高,预测样本的平均相对误差为3.581 9%,计算速度较快,优于改进的BP算法、GA-BP算法和改进支持向量机算法,在实际的工程应用中有着良好的应用前景.
推荐文章
进化-最小二乘支持向量机的边坡稳定性估计
边坡稳定
最小二乘支持向量机
遗传算法
参数选择
基于PSO和LSSVM的边坡稳定性评价方法
边坡稳定性评价
粒子群算法
最小二乘支持向量机
参数优化
粒子群算法优化支持向量机的网络流量混沌预测
粒子群算法优化
支持向量机
网络流量
混沌预测
平均绝对误差
蚁群算法
基于粒子群优化支持向量机的建筑室内温度预测模型
室内温度
楼宇阀门
支持向量机
粒子群优化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化支持向量机的边坡稳定性预测
来源期刊 甘肃科学学报 学科 工学
关键词 粒子群优化算法 支持向量机 稳定性预测 安全系数
年,卷(期) 2019,(1) 所属期刊栏目 工程技术
研究方向 页码范围 99-103
页数 5页 分类号 TU457
字数 3028字 语种 中文
DOI 10.16468/j.cnki.issn1004-0366.2019.01.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄张裕 河海大学地球科学与工程学院 92 568 12.0 17.0
2 李建新 江西理工大学建筑与测绘工程学院 4 7 2.0 2.0
3 陈希鸣 河海大学地球科学与工程学院 4 4 1.0 2.0
4 秦洁 河海大学地球科学与工程学院 4 4 1.0 2.0
5 刘仁志 河海大学地球科学与工程学院 5 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (82)
共引文献  (105)
参考文献  (11)
节点文献
引证文献  (4)
同被引文献  (53)
二级引证文献  (0)
1955(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(12)
  • 参考文献(0)
  • 二级参考文献(12)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群优化算法
支持向量机
稳定性预测
安全系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
甘肃科学学报
双月刊
1004-0366
62-1098/N
大16开
兰州市定西南路299号
54-66
1989
chi
出版文献量(篇)
3450
总下载数(次)
10
总被引数(次)
17420
论文1v1指导