原文服务方: 岩土力学       
摘要:
针对最小二乘支持向量机的参数选择问题,用遗传算法来搜索最小二乘支持向量机的相关参数,避免了人工搜索参数的盲目性,提高了模型的推广性能.根据大量的实际边坡工程数据,建立了基于进化-最小二乘支持向量机的边坡稳定性模型,并将其应用于估计丁家河磷矿自然边坡稳定状况.计算结果与工程实际情况一致,表明了该方法的有效性和合理性.
推荐文章
基于灰色最小二乘支持向量机的边坡位移预测
边坡位移
灰色模型
最小二乘支持向量机
遗传算法
时间序列
基于差分进化算法-最小二乘支持向量机的软测量建模
软测量
最小二乘支持向量机
差分进化算法
对羧基苯甲醛
基于最小二乘支持向量机的双模控制
预测控制
最小二乘支持向量机
稳定性
李亚普诺夫方法
双模控制
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 进化-最小二乘支持向量机的边坡稳定性估计
来源期刊 岩土力学 学科
关键词 边坡稳定 最小二乘支持向量机 遗传算法 参数选择
年,卷(期) 2009,(12) 所属期刊栏目 数值分析
研究方向 页码范围 3876-3880
页数 5页 分类号 TU457
字数 语种 中文
DOI 10.3969/j.issn.1000-7598.2009.12.054
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马文涛 宁夏大学数学计算机学院 34 246 9.0 15.0
2 孔亮 青岛理工大学理学院 40 372 10.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (176)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (28)
二级引证文献  (33)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(1)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(6)
  • 参考文献(1)
  • 二级参考文献(5)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(9)
  • 参考文献(2)
  • 二级参考文献(7)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(3)
  • 引证文献(0)
  • 二级引证文献(3)
2014(5)
  • 引证文献(2)
  • 二级引证文献(3)
2015(5)
  • 引证文献(0)
  • 二级引证文献(5)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
边坡稳定
最小二乘支持向量机
遗传算法
参数选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
岩土力学
月刊
1000-7598
42-1199/O3
大16开
1979-01-01
chi
出版文献量(篇)
11045
总下载数(次)
0
总被引数(次)
250658
相关基金
宁夏自然科学基金
英文译名:Natural Science Foundation of Ningxia Province
官方网址:http://202.201.112.98/research/main/news_view.asp?newsid=158
项目类型:重大项目
学科类型:
论文1v1指导