原文服务方: 计算机应用研究       
摘要:
提出了一种小波包分析与最小二乘支持向量机相结合的机械设备故障诊断模型.首先对故障信号功率谱进行小波分解,简化了故障特征向量的提取,然后采用最小二乘支持向量机进行故障诊断.在该模型中,用二次损失函数取代支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转换为线性方程组的求解,并提出对核函数的σ参数进行动态选取.仿真结果表明:该模型可以取得较高的故障诊断准确率.
推荐文章
模拟电路故障诊断的最小二乘支持向量机方法研究
最小二乘支持向量机
模拟电路
故障诊断
蚁群优化
基于改进最小二乘支持向量机的柱塞泵故障诊断模型
柱塞泵
最小二乘支持向量机
蚁群算法
故障诊断
基于最小二乘支持向量机的异步电机转子故障诊断
鼠笼电机
故障诊断
小波变换
FFT
支持向量机
基于最小二乘支持向量机的往复式压缩机故障诊断研究
往复式压缩机
故障诊断
LSSVM
振动信号
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的故障诊断方法
来源期刊 计算机应用研究 学科
关键词 小波包分析 故障诊断 特征向量 最小二乘支持向量机 核函数
年,卷(期) 2007,(7) 所属期刊栏目 研究探讨
研究方向 页码范围 99-101
页数 3页 分类号 TP301
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2007.07.032
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 单甘霖 军械工程学院光学与电子工程系 113 845 15.0 23.0
2 杨奎河 军械工程学院光学与电子工程系 4 100 4.0 4.0
6 赵玲玲 河北科技大学信息科学与工程学院 19 214 8.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (63)
参考文献  (6)
节点文献
引证文献  (24)
同被引文献  (45)
二级引证文献  (17)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(5)
  • 引证文献(5)
  • 二级引证文献(0)
2009(6)
  • 引证文献(5)
  • 二级引证文献(1)
2010(6)
  • 引证文献(5)
  • 二级引证文献(1)
2011(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(3)
  • 引证文献(2)
  • 二级引证文献(1)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
研究主题发展历程
节点文献
小波包分析
故障诊断
特征向量
最小二乘支持向量机
核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
论文1v1指导