原文服务方: 计算机测量与控制       
摘要:
针对异步电机的构造与转子故障特征,基于统计学习理论提出了信号处理技术与支持向量机故障诊断相结合的方法,以鼠笼式异步电动机为研究对象,建立了电机转子故障实验系统,并采集了电机故障信号,并使用最小二乘支持向量机(LS— SVM)进行故障分类;其次针对鼠笼式电机转子多故障分类问题,提出了快速Fourier变换、小波包分析两种不同故障信号预处理方法,将采集的定子电流信号、电机机壳振动信号分别进行分析,提取了故障特征向量,并结合SVM分类方法,实现了电机转子的故障诊断;最后,实验结果表明:基于定子电流频谱的快速Fourier变换与SVM相结合分析方法的准确判断率为93.75%,而基于db3小波分析与SVM结合分析方法的准确判断率为100%,说明了小波分析与SVM结合优越性.
推荐文章
基于最小二乘支持向量机的故障诊断方法
小波包分析
故障诊断
特征向量
最小二乘支持向量机
核函数
模拟电路故障诊断的最小二乘支持向量机方法研究
最小二乘支持向量机
模拟电路
故障诊断
蚁群优化
基于最小二乘支持向量机的往复式压缩机故障诊断研究
往复式压缩机
故障诊断
LSSVM
振动信号
基于改进最小二乘支持向量机的柱塞泵故障诊断模型
柱塞泵
最小二乘支持向量机
蚁群算法
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的异步电机转子故障诊断
来源期刊 计算机测量与控制 学科
关键词 鼠笼电机 故障诊断 小波变换 FFT 支持向量机
年,卷(期) 2013,(2) 所属期刊栏目 自动化测试技术
研究方向 页码范围 336-339
页数 4页 分类号 TM307
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭西进 中国矿业大学信息与电气工程学院 82 391 10.0 15.0
2 闫俊荣 江苏师范大学电气工程及自动化学院 7 28 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (99)
参考文献  (7)
节点文献
引证文献  (10)
同被引文献  (52)
二级引证文献  (25)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(11)
  • 参考文献(0)
  • 二级参考文献(11)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(4)
  • 引证文献(2)
  • 二级引证文献(2)
2017(5)
  • 引证文献(2)
  • 二级引证文献(3)
2018(8)
  • 引证文献(2)
  • 二级引证文献(6)
2019(12)
  • 引证文献(0)
  • 二级引证文献(12)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
鼠笼电机
故障诊断
小波变换
FFT
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导