基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Quality is a very important parameter for all objects and their functionalities. In image-based object recognition, image quality is a prime criterion. For authentic image quality evaluation, ground truth is required. But in practice, it is very difficult to find the ground truth. Usually, image quality is being assessed by full reference metrics, like MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio). In contrast to MSE and PSNR, recently, two more full reference metrics SSIM (Structured Similarity Indexing Method) and FSIM (Feature Similarity Indexing Method) are developed with a view to compare the structural and feature similarity measures between restored and original objects on the basis of perception. This paper is mainly stressed on comparing different image quality metrics to give a comprehensive view. Experimentation with these metrics using benchmark images is performed through denoising for different noise concentrations. All metrics have given consistent results. However, from representation perspective, SSIM and FSIM are normalized, but MSE and PSNR are not;and from semantic perspective, MSE and PSNR are giving only absolute error;on the other hand, SSIM and PSNR are giving perception and saliency-based error. So, SSIM and FSIM can be treated more understandable than the MSE and PSNR.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Gautam
Leachate
Hydrochemical parameters
Piper plot
Ternary and Durov's diagram
Spatial variation
A study of groundwater irrigation water quality in south-central Bangladesh: a geo-statistical model
Semivariogram
Ordinary kriging model
Salinity
Irrigation water quality index
GIS
Hydrochemistry
Evaluation of groundwater quality in the Dibdibba aquifer using hydrogeochemical and isotope techniq
Safwan-Zubair
Dibdibba formation
Geochemical modeling
Mixing
Stable isotopes
Basra
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study
来源期刊 电脑和通信(英文) 学科 工学
关键词 Image Quality COMPUTER Simulation GAUSSIAN Noise DENOISING
年,卷(期) dnhtxyw_2019,(3) 所属期刊栏目
研究方向 页码范围 8-18
页数 11页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Image
Quality
COMPUTER
Simulation
GAUSSIAN
Noise
DENOISING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
论文1v1指导